Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Post‐lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones

Identifieur interne : 00AF01 ( Main/Exploration ); précédent : 00AF00; suivant : 00AF02

Post‐lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones

Auteurs : Izumi Sugihara [Japon] ; Ann M. Lohof [France] ; Mathieu Letellier [France] ; Jean Mariani [France] ; Rachel M. Sherrard [Australie]

Source :

RBID : ISTEX:4B25E6C5BA90EC7992823B639091174074EC6FE9

English descriptors

Abstract

In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development, however, postlesion plasticity may generate alternate paths, providing models to investigate reinnervating axon–target interactions. After unilateral transection of the neonatal rat olivocerebellar path, axons from the ipsilateral inferior olive grow into the denervated hemicerebellum and develop climbing fibre (CF)‐like arbors on Purkinje cells (PCs). However, the synaptic function and extent of PC reinnervation remain unknown. In adult rats pedunculotomized on postnatal day 3 the morphological and electrophysiological properties of reinnervating olivocerebellar axons were studied, using axonal reconstruction and patch‐clamp PC recording of CF‐induced synaptic currents. Reinnervated PCs displayed normal CF currents, and the frequency of PC reinnervation decreased with increasing laterality. Reinnervating CF arbors were predominantly normal but 6% branched within the molecular layer forming smaller secondary arbors. CFs arose from transcommissural olivary axons, which branched extensively near their target PCs to produce on average 36 CFs, which is six times more than normal. Axons terminating in the hemisphere developed more CFs than those terminating in the vermis. However, the precise parasagittal microzone organization was preserved. Transcommissural axons also branched, although to a lesser extent, to the deep cerebellar nuclei and terminated in a distribution indicative of the olivo‐cortico‐nuclear circuit. These results show that reinnervating olivocerebellar axons are highly plastic in the cerebellum, compensating anatomically and functionally for early postnatal denervation, and that this reparation obeys precise topographic constraints although axonal plasticity is modified by target (PC or deep nuclear neurons) interactions.

Url:
DOI: 10.1111/j.1460-9568.2003.03045.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Post‐lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones</title>
<author>
<name sortKey="Sugihara, Izumi" sort="Sugihara, Izumi" uniqKey="Sugihara I" first="Izumi" last="Sugihara">Izumi Sugihara</name>
</author>
<author>
<name sortKey="Lohof, Ann M" sort="Lohof, Ann M" uniqKey="Lohof A" first="Ann M." last="Lohof">Ann M. Lohof</name>
</author>
<author>
<name sortKey="Letellier, Mathieu" sort="Letellier, Mathieu" uniqKey="Letellier M" first="Mathieu" last="Letellier">Mathieu Letellier</name>
</author>
<author>
<name sortKey="Mariani, Jean" sort="Mariani, Jean" uniqKey="Mariani J" first="Jean" last="Mariani">Jean Mariani</name>
</author>
<author>
<name sortKey="Sherrard, Rachel M" sort="Sherrard, Rachel M" uniqKey="Sherrard R" first="Rachel M." last="Sherrard">Rachel M. Sherrard</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4B25E6C5BA90EC7992823B639091174074EC6FE9</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1111/j.1460-9568.2003.03045.x</idno>
<idno type="url">https://api.istex.fr/document/4B25E6C5BA90EC7992823B639091174074EC6FE9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E17</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E17</idno>
<idno type="wicri:Area/Istex/Curation">000E17</idno>
<idno type="wicri:Area/Istex/Checkpoint">001B07</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001B07</idno>
<idno type="wicri:doubleKey">0953-816X:2003:Sugihara I:post:lesion:transcommissural</idno>
<idno type="wicri:Area/Main/Merge">00BC40</idno>
<idno type="wicri:Area/Main/Curation">00AF01</idno>
<idno type="wicri:Area/Main/Exploration">00AF01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Post‐lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones</title>
<author>
<name sortKey="Sugihara, Izumi" sort="Sugihara, Izumi" uniqKey="Sugihara I" first="Izumi" last="Sugihara">Izumi Sugihara</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lohof, Ann M" sort="Lohof, Ann M" uniqKey="Lohof A" first="Ann M." last="Lohof">Ann M. Lohof</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Développement et Vieillissement du Système Nerveux, UMR 7102 Neurobiologie des Processus Adaptatifs, CNRS et Université Pierre et Marie Curie, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Letellier, Mathieu" sort="Letellier, Mathieu" uniqKey="Letellier M" first="Mathieu" last="Letellier">Mathieu Letellier</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Développement et Vieillissement du Système Nerveux, UMR 7102 Neurobiologie des Processus Adaptatifs, CNRS et Université Pierre et Marie Curie, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mariani, Jean" sort="Mariani, Jean" uniqKey="Mariani J" first="Jean" last="Mariani">Jean Mariani</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Développement et Vieillissement du Système Nerveux, UMR 7102 Neurobiologie des Processus Adaptatifs, CNRS et Université Pierre et Marie Curie, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sherrard, Rachel M" sort="Sherrard, Rachel M" uniqKey="Sherrard R" first="Rachel M." last="Sherrard">Rachel M. Sherrard</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Developmental Neuroplasticity Laboratory, Department of Anatomy, School of Biomedical Science, James Cook University, Townsville, Queensland 4811</wicri:regionArea>
<wicri:noRegion>Queensland 4811</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">European Journal of Neuroscience</title>
<title level="j" type="alt">EUROPEAN JOURNAL OF NEUROSCIENCE</title>
<idno type="ISSN">0953-816X</idno>
<idno type="eISSN">1460-9568</idno>
<imprint>
<biblScope unit="vol">18</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="3027">3027</biblScope>
<biblScope unit="page" to="3036">3036</biblScope>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2003-12">2003-12</date>
</imprint>
<idno type="ISSN">0953-816X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0953-816X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Afferent</term>
<term>Angaut</term>
<term>Arbor</term>
<term>Arborizations</term>
<term>Arrowhead</term>
<term>Axon</term>
<term>Axonal</term>
<term>Black arrowheads</term>
<term>Bres</term>
<term>Camera lucida</term>
<term>Cerebellar</term>
<term>Cerebellar cortex</term>
<term>Cerebellum</term>
<term>Collateral</term>
<term>Comp</term>
<term>Control animals</term>
<term>Deep cerebellar nuclei</term>
<term>Dendritic</term>
<term>Electrophysiological</term>
<term>European journal</term>
<term>European neuroscience societies</term>
<term>Functional olivocerebellar reinnervation</term>
<term>Granular layer</term>
<term>Hemicerebellum</term>
<term>Inferior cerebellar peduncle</term>
<term>Innervation</term>
<term>Intermedia</term>
<term>Lateral</term>
<term>Lateral vermis</term>
<term>Lobule</term>
<term>Mariani</term>
<term>Midline</term>
<term>Molecular layer</term>
<term>Morphology</term>
<term>Multiple innervation</term>
<term>Neurol</term>
<term>Neurosci</term>
<term>Neuroscience</term>
<term>Nuclear collaterals</term>
<term>Nucleus medialis</term>
<term>Olivocerebellar</term>
<term>Olivocerebellar axon</term>
<term>Olivocerebellar axons</term>
<term>Olivocerebellar path</term>
<term>Olivocerebellar pathway</term>
<term>Olivocerebellar projection</term>
<term>Parasagittal</term>
<term>Parasagittal organization</term>
<term>Parasagittal plane</term>
<term>Pars intermedia</term>
<term>Pathway</term>
<term>Pedunculotomised</term>
<term>Pedunculotomised hemicerebellum</term>
<term>Purkinje</term>
<term>Purkinje cell</term>
<term>Purkinje cells</term>
<term>Reinnervated</term>
<term>Reinnervating</term>
<term>Reinnervating axons</term>
<term>Reinnervating olivocerebellar axons</term>
<term>Reinnervation</term>
<term>Rossi</term>
<term>Serial sections</term>
<term>Sherrard</term>
<term>Sotelo</term>
<term>Sugihara</term>
<term>Synapse</term>
<term>Synaptic</term>
<term>Synaptic function</term>
<term>Terminal arbors</term>
<term>Thin collaterals</term>
<term>Transcommissural</term>
<term>Transcommissural axons</term>
<term>Transcommissural olivocerebellar axons</term>
<term>Transcommissural projection</term>
<term>Tropic effect</term>
<term>Unilateral transection</term>
<term>Vermal lobules</term>
<term>Vermis</term>
<term>White arrowheads</term>
<term>White matter</term>
<term>Zagrebelsky</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Afferent</term>
<term>Angaut</term>
<term>Arbor</term>
<term>Arborizations</term>
<term>Arrowhead</term>
<term>Axon</term>
<term>Axonal</term>
<term>Black arrowheads</term>
<term>Bres</term>
<term>Camera lucida</term>
<term>Cerebellar</term>
<term>Cerebellar cortex</term>
<term>Cerebellum</term>
<term>Collateral</term>
<term>Comp</term>
<term>Control animals</term>
<term>Deep cerebellar nuclei</term>
<term>Dendritic</term>
<term>Electrophysiological</term>
<term>European journal</term>
<term>European neuroscience societies</term>
<term>Functional olivocerebellar reinnervation</term>
<term>Granular layer</term>
<term>Hemicerebellum</term>
<term>Inferior cerebellar peduncle</term>
<term>Innervation</term>
<term>Intermedia</term>
<term>Lateral</term>
<term>Lateral vermis</term>
<term>Lobule</term>
<term>Mariani</term>
<term>Midline</term>
<term>Molecular layer</term>
<term>Morphology</term>
<term>Multiple innervation</term>
<term>Neurol</term>
<term>Neurosci</term>
<term>Neuroscience</term>
<term>Nuclear collaterals</term>
<term>Nucleus medialis</term>
<term>Olivocerebellar</term>
<term>Olivocerebellar axon</term>
<term>Olivocerebellar axons</term>
<term>Olivocerebellar path</term>
<term>Olivocerebellar pathway</term>
<term>Olivocerebellar projection</term>
<term>Parasagittal</term>
<term>Parasagittal organization</term>
<term>Parasagittal plane</term>
<term>Pars intermedia</term>
<term>Pathway</term>
<term>Pedunculotomised</term>
<term>Pedunculotomised hemicerebellum</term>
<term>Purkinje</term>
<term>Purkinje cell</term>
<term>Purkinje cells</term>
<term>Reinnervated</term>
<term>Reinnervating</term>
<term>Reinnervating axons</term>
<term>Reinnervating olivocerebellar axons</term>
<term>Reinnervation</term>
<term>Rossi</term>
<term>Serial sections</term>
<term>Sherrard</term>
<term>Sotelo</term>
<term>Sugihara</term>
<term>Synapse</term>
<term>Synaptic</term>
<term>Synaptic function</term>
<term>Terminal arbors</term>
<term>Thin collaterals</term>
<term>Transcommissural</term>
<term>Transcommissural axons</term>
<term>Transcommissural olivocerebellar axons</term>
<term>Transcommissural projection</term>
<term>Tropic effect</term>
<term>Unilateral transection</term>
<term>Vermal lobules</term>
<term>Vermis</term>
<term>White arrowheads</term>
<term>White matter</term>
<term>Zagrebelsky</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development, however, postlesion plasticity may generate alternate paths, providing models to investigate reinnervating axon–target interactions. After unilateral transection of the neonatal rat olivocerebellar path, axons from the ipsilateral inferior olive grow into the denervated hemicerebellum and develop climbing fibre (CF)‐like arbors on Purkinje cells (PCs). However, the synaptic function and extent of PC reinnervation remain unknown. In adult rats pedunculotomized on postnatal day 3 the morphological and electrophysiological properties of reinnervating olivocerebellar axons were studied, using axonal reconstruction and patch‐clamp PC recording of CF‐induced synaptic currents. Reinnervated PCs displayed normal CF currents, and the frequency of PC reinnervation decreased with increasing laterality. Reinnervating CF arbors were predominantly normal but 6% branched within the molecular layer forming smaller secondary arbors. CFs arose from transcommissural olivary axons, which branched extensively near their target PCs to produce on average 36 CFs, which is six times more than normal. Axons terminating in the hemisphere developed more CFs than those terminating in the vermis. However, the precise parasagittal microzone organization was preserved. Transcommissural axons also branched, although to a lesser extent, to the deep cerebellar nuclei and terminated in a distribution indicative of the olivo‐cortico‐nuclear circuit. These results show that reinnervating olivocerebellar axons are highly plastic in the cerebellum, compensating anatomically and functionally for early postnatal denervation, and that this reparation obeys precise topographic constraints although axonal plasticity is modified by target (PC or deep nuclear neurons) interactions.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Sugihara, Izumi" sort="Sugihara, Izumi" uniqKey="Sugihara I" first="Izumi" last="Sugihara">Izumi Sugihara</name>
</region>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Lohof, Ann M" sort="Lohof, Ann M" uniqKey="Lohof A" first="Ann M." last="Lohof">Ann M. Lohof</name>
</region>
<name sortKey="Letellier, Mathieu" sort="Letellier, Mathieu" uniqKey="Letellier M" first="Mathieu" last="Letellier">Mathieu Letellier</name>
<name sortKey="Mariani, Jean" sort="Mariani, Jean" uniqKey="Mariani J" first="Jean" last="Mariani">Jean Mariani</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Sherrard, Rachel M" sort="Sherrard, Rachel M" uniqKey="Sherrard R" first="Rachel M." last="Sherrard">Rachel M. Sherrard</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00AF01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00AF01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:4B25E6C5BA90EC7992823B639091174074EC6FE9
   |texte=   Post‐lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024